Chaitin numbers , Solovay machines , and G % odel incompleteness
نویسنده
چکیده
Computably enumerable (c.e.) reals can be coded by Chaitin machines through their halting probabilities. Tuning Solovay’s construction of a Chaitin universal machine for which ZFC (if arithmetically sound) cannot determine any single bit of the binary expansion of its halting probability, we show that every c.e. random real is the halting probability of a universal Chaitin machine for which ZFC cannot determine more than its initial block of 1 bits—as soon as you get a 0, it is all over. Finally, a constructive version of Chaitin information-theoretic incompleteness theorem is proven. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Chaitin Ω Numbers , Solovay Machines , and Incompleteness
Computably enumerable (c.e.) reals can be coded by Chaitin machines through their halting probabilities. Tuning Solovay’s construction of a Chaitin universal machine for which ZFC (if arithmetically sound) cannot determine any single bit of the binary expansion of its halting probability, we show that every c.e. random real is the halting probability of a universal Chaitin machine for which ZFC...
متن کاملDedicated to G. J. Chaitin for his 50th Birthday Recursively Enumerable Reals and Chaitin Numbers?
A real is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay [23] and Chaitin [10] we say that an r.e. real dominates an r.e. real if from a good approximation of from below one can compute a good approximation of from below. We shall study this relation and characterize it in terms of relations between r.e. sets. Sol...
متن کاملRecursively enumerable reals and Chaitin numbers ;
A real is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay (unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, May 1975, 215 pp.) and Chaitin (IBM J. Res. Develop. 21 (1977) 350–359, 496.) we say that an r.e. real dominates an r.e. real if from a good approximation of from belo...
متن کاملCdmtcs Research Report Series Recursively Enumerable Reals and Chaitin Numbers Recursively Enumerable Reals and Chaitin Numbers
A real is called recursively enumerable if it can be approximated by an increasing, recursive sequence of rationals. The halting probability of a universal selfdelimiting Turing machine (Chaitin's number, [10]) is a random r.e. real. Solovay's [25] -like reals are also random r.e. reals. Solovay showed that any Chaitin number is -like. In this paper we show that the converse implication is true...
متن کاملEven Accelerating Machines are Not Universal
We draw an analogy between Godel's Incompleteness Theorem in mathematics, and the impossibility of achieving a Universal Computer in computer science. Speci cally, Godel proved that there exist formal systems of mathematics that are consistent but not complete. In the same way, we show that there does not exist a general-purpose computer that is universal in the sense of being able to simulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002